Determination of reference genes as a quantitative standard for gene expression analysis in mouse mesangial cells


  • Nogueira, A., Pires, M. J. & Oliveira, P. A. Pathophysiological mechanisms of renal fibrosis: A review of animal models and therapeutic strategies. In Vivo 31, 1–22. https://doi.org/10.21873/invivo.11019 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simonson, M. S. Phenotypic transitions and fibrosis in diabetic nephropathy. Kidney Int. 71, 846–854. https://doi.org/10.1038/sj.ki.5002180 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Leask, A. & Abraham, D. J. TGF-beta signaling and the fibrotic response. FASEB J. 18, 816–827. https://doi.org/10.1096/fj.03-1273rev (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Padgett, R. W. & Reiss, M. TGFbeta superfamily signaling: Notes from the desert. Development 134, 3565–3569. https://doi.org/10.1242/dev.005926 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Rahimi, R. A. & Leof, E. B. TGF-beta signaling: A tale of two responses. J. Cell Biochem. 102, 593–608. https://doi.org/10.1002/jcb.21501 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Derveaux, S., Vandesompele, J. & Hellemans, J. How to do successful gene expression analysis using real-time PCR. Methods 50, 227–230. https://doi.org/10.1016/j.ymeth.2009.11.001 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Ho-Pun-Cheung, A. et al. Reverse transcription-quantitative polymerase chain reaction: Description of a RIN-based algorithm for accurate data normalization. BMC Mol. Biol. 10, 31. https://doi.org/10.1186/1471-2199-10-31 (2009).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bustin, S. A. et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622. https://doi.org/10.1373/clinchem.2008.112797 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Schwarzenbach, H., da Silva, A. M., Calin, G. & Pantel, K. Data normalization strategies for MicroRNA quantification. Clin. Chem. 61, 1333–1342. https://doi.org/10.1373/clinchem.2015.239459 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muñoz, J. J. et al. Identification of housekeeping genes for microRNA expression analysis in kidney tissues of Pkd1 deficient mouse models. Sci. Rep. 10, 231. https://doi.org/10.1038/s41598-019-57112-4 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caracausi, M. et al. Systematic identification of human housekeeping genes possibly useful as references in gene expression studies. Mol. Med. Rep. 16, 2397–2410. https://doi.org/10.3892/mmr.2017.6944 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eisenberg, E. & Levanon, E. Y. Human housekeeping genes, revisited. Trends Genet. 29, 569–574. https://doi.org/10.1016/j.tig.2013.05.010 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wang, Z., Lyu, Z., Pan, L., Zeng, G. & Randhawa, P. Defining housekeeping genes suitable for RNA-seq analysis of the human allograft kidney biopsy tissue. BMC Med. Genomics 12, 86. https://doi.org/10.1186/s12920-019-0538-z (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jung, M. et al. In search of suitable reference genes for gene expression studies of human renal cell carcinoma by real-time PCR. BMC Mol Biol 8, 47. https://doi.org/10.1186/1471-2199-8-47 (2007).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huggett, J., Dheda, K., Bustin, S. & Zumla, A. Real-time RT-PCR normalisation; strategies and considerations. Genes Immun. 6, 279–284. https://doi.org/10.1038/sj.gene.6364190 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Hosni, N. D., Anauate, A. C. & Boim, M. A. Reference genes for mesangial cell and podocyte qPCR gene expression studies under high-glucose and renin-angiotensin-system blocker conditions. PLoS ONE 16, e0246227. https://doi.org/10.1371/journal.pone.0246227 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muñoz, J. J. et al. Ppia is the most stable housekeeping gene for qRT-PCR normalization in kidneys of three Pkd1-deficient mouse models. Sci. Rep. 11, 19798. https://doi.org/10.1038/s41598-021-99366-x (2021).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guan, Q., Nguan, C. Y. & Du, C. Expression of transforming growth factor-beta1 limits renal ischemia-reperfusion injury. Transplantation 89, 1320–1327. https://doi.org/10.1097/TP.0b013e3181d8e9dc (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Morrissey, J. et al. Transforming growth factor-beta induces renal epithelial jagged-1 expression in fibrotic disease. J. Am. Soc. Nephrol. 13, 1499–1508. https://doi.org/10.1097/01.asn.0000017905.77985.4a (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Wu, X. et al. Exosomes from high glucose-treated glomerular endothelial cells trigger the epithelial-mesenchymal transition and dysfunction of podocytes. Sci. Rep. 7, 9371. https://doi.org/10.1038/s41598-017-09907-6 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cappelli, C. et al. The TGF-β profibrotic cascade targets ecto-5’-nucleotidase gene in proximal tubule epithelial cells and is a traceable marker of progressive diabetic kidney disease. Biochim. Biophys. Acta Mol. Basis Dis. 1866, 165796. https://doi.org/10.1016/j.bbadis.2020.165796 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Castro, N. E., Kato, M., Park, J. T. & Natarajan, R. Transforming growth factor β1 (TGF-β1) enhances expression of profibrotic genes through a novel signaling cascade and microRNAs in renal mesangial cells. J. Biol. Chem. 289, 29001–29013. https://doi.org/10.1074/jbc.M114.600783 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takakura, K., Tahara, A., Sanagi, M., Itoh, H. & Tomura, Y. Antifibrotic effects of pirfenidone in rat proximal tubular epithelial cells. Ren. Fail. 34, 1309–1316. https://doi.org/10.3109/0886022X.2012.718955 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Deshpande, S. et al. Reduced autophagy by a microRNA-mediated signaling cascade in diabetes-induced renal glomerular hypertrophy. Sci. Rep. 8, 6954. https://doi.org/10.1038/s41598-018-25295-x (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, F. et al. High glucose and TGF-β1 reduce expression of endoplasmic reticulum-resident selenoprotein S and selenoprotein N in human mesangial cells. Ren. Fail. 41, 762–769. https://doi.org/10.1080/0886022X.2019.1641413 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jia, Y. et al. Dysregulation of histone H3 lysine 27 trimethylation in transforming growth factor-β1-induced gene expression in mesangial cells and diabetic kidney. J. Biol. Chem. 294, 12695–12707. https://doi.org/10.1074/jbc.RA119.007575 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Masola, V. et al. In vitro effects of interleukin (IL)-1 beta inhibition on the epithelial-to-mesenchymal transition (EMT) of renal tubular and hepatic stellate cells. J. Transl. Med. 17, 12. https://doi.org/10.1186/s12967-019-1770-1 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ma, J. et al. Up-regulation of microRNA-93 inhibits TGF-β1-induced EMT and renal fibrogenesis by down-regulation of Orai1. J. Pharmacol. Sci. 136, 218–227. https://doi.org/10.1016/j.jphs.2017.12.010 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Suzuki, Y. et al. Transforming growth factor-β induces vascular endothelial growth factor-C expression leading to lymphangiogenesis in rat unilateral ureteral obstruction. Kidney Int. 81, 865–879. https://doi.org/10.1038/ki.2011.464 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Biederman, J., Yee, J. & Cortes, P. Validation of internal control genes for gene expression analysis in diabetic glomerulosclerosis. Kidney Int. 66, 2308–2314. https://doi.org/10.1111/j.1523-1755.2004.66016.x (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • Leong, K. G., Ozols, E., Kanellis, J., Nikolic-Paterson, D. J. & Ma, F. Y. Cyclophilin A promotes inflammation in acute kidney injury but not in renal fibrosis. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21103667 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nigro, P., Pompilio, G. & Capogrossi, M. C. Cyclophilin A: A key player for human disease. Cell Death Dis. 4, e888. https://doi.org/10.1038/cddis.2013.410 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Read More:Determination of reference genes as a quantitative standard for gene expression analysis in mouse mesangial cells

    2022-09-17 09:12:28

    Get real time updates directly on you device, subscribe now.

    Subscribe
    Notify of
    guest
    0 Comments
    Inline Feedbacks
    View all comments

    This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More

    Get more stuff like this
    in your inbox

    Subscribe to our mailing list and get interesting stuff and updates to your email inbox.

    Thank you for subscribing.

    Something went wrong.